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Abstract

Fault-bend folding is a common folding mechanism in thrust and fold belts worldwide. The widely used kink-band geometric model of

fault-bend folding necessitates complex ramp segmentations to reproduce the rounded shape of many natural thrust related anticlines.

Curvilinear hinge sectors provide a geometric and kinematic alternative solution to kink bands for modelling curved-hinge folds. We

developed an analytical solution for modelling fault-bend folding using circular hinge sectors. The velocity field of this kinematic solution is

different from that associated with the classical, kink-style model. Our solution predicts the development of curvilinear anticlines above

staircase fault geometries, the occurrence of limb rotation and, consequently, the development of rotational syngrowth wedges on both the

forelimb and the crest. Conversely to the kink-style kinematics, curvilinear hinge sectors imply a dependence of deformation intensity from

the fold shape and stratigraphic position of the folded layer. Application to natural thrust-related anticlines validates the effectiveness of

curvilinear fault-bend folding.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The shape of natural thrust-related anticlines depends on

the interplay among several factors including the mechan-

ical stratigraphy of the folded multilayer (e.g. Corbett et al.,

1987; Fischer and Jackson, 1999; Chester, 2003), the

folding mechanism (e.g. De Sitter, 1956; Faill, 1973;

Ramsay, 1974; Dahlstrom, 1990), the strain rate and state

of stress (e.g. Jamison, 1992), the deformation history (e.g.

Woodward, 1999), the fault shape (e.g. Rich, 1934; Suppe,

1983; Jamison, 1997; Chester and Chester, 1990), the

interaction between tectonic and surface processes, particu-

larly the ratio between fold uplift rate and syntectonic

sedimentation rate (e.g. Storti and Salvini, 1996), and rock–

fluid interactions (e.g. Morgan and Karig, 1995). Conse-

quently, natural fold shapes range from chevron (e.g.

Ramsay, 1974; Fowler and Winsor, 1997) to concentric

(e.g. Dahlstrom, 1969). Despite such a variability, the
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computational simplicity of the kink-style geometry (e.g.

Norris, 1961; Faill, 1969; Ramsay, 1974) with respect to

curvilinear geometries (Fig. 1) (e.g. Busk, 1929; Price,

1965), determined the adoption of the former fold style in

most mathematical models of thrust-related folding (e.g.

Suppe, 1983; Jamison, 1997; Chester and Chester, 1990;

Mitra, 1990; Suppe and Medwedeff, 1990; Epard and

Groshong, 1995; Homza and Wallace, 1995; Poblet and

McClay, 1996). In these models, the curvilinear shape of

hinge zones is commonly assumed to be a second-order

feature suitable to be neglected in the first-order reconstruc-

tion of the fold internal architecture (e.g. Woodward et al.,

1989). When fold roundness cannot be satisfactorily

modelled by a simple kink-band, the fit is improved by

increasing the number of constantly dipping panels in the

hanging wall (e.g. Suppe, 1983; Jamison and Pope, 1996;

Medwedeff and Suppe, 1997). The application of kink-style

models to many natural anticlines worldwide supports the

geometrical validity of this assumption.

A satisfactory geometrical fit, however, does not

necessarily imply that fold kinematics is unequivocally
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Fig. 1. Examples of curvilinear anticlines: (A) panoramic view of the Mt. Catria Anticline (Northern Apennine, Italy); (B) view of the crest and forelimb of the

Mediano anticline (Southern Pyrenees, Spain); (C) panoramic view of the backlimb and its transition to the crest in the Bangestan anticline (Zagros Mountains,

Iran).
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constrained. Identical fold geometries can be obtained via

different kinematic pathways (e.g. Storti and Poblet, 1997).

Comparison between a kink-style hinge and a circular sector

highlights remarkably different particle paths (Fig. 2a). A

kink axial surface imposes an instantaneous transition from

the unfolded state to the final attitude of the folded

multilayer. The corresponding particle path consists of

two straight segments (e.g. Hardy, 1995). On the other hand,

a circular hinge sector produces the progressive variation of

layer dip up to its final folded attitude. The corresponding

particle path is curvilinear. Different particle paths imply (1)

different partitioning of layer-parallel slip in flexural-slip

folding and (2) different growth stratal geometries when

syntectonic sedimentation occurs during folding. (1) With a

kink axial surface, the total amount of layer-parallel slip

required by parallel folding is instantaneously acquired in

the entire folded multilayer (Fig. 2b). Conversely, progress-

ive folding within a circular hinge sector implies the

occurrence of infinitesimal increments of layer-parallel slip

until the final layer dip is attained. The upward broadening

geometry of circular hinge sectors causes a vertically

inhomogeneous distribution of layer-parallel slip incre-

ments (Fig. 2b). (2) The instantaneous acquisition of final

layer dip past a kink axial surface produces growth strata
Fig. 2. Comparison between kink-style and circular sector hinges: (a) in the

two constructions, motion above the same fault geometry produces

different particle trajectories, different fold geometries and different time

evolution of bedding dip. The resulting cumulative layer-parallel slip

distribution (b), and growth stratal geometries (c), strongly differs in the

two hinge styles.
geometries consisting of uniformly dipping rock panels

paralleling the top of the pre-growth strata (Suppe et al.,

1992). On the other hand, progressive rotation of the

substratum during sediment deposition produces wedge-like

geometries (e.g. Hardy and Poblet, 1994) (Fig. 2c).

Differences illustrated in Fig. 2 remark how the proper

modelling of natural fold geometry cannot be restricted to a

mere geometric criterion, suitable to provide multiple

solutions. Instead, it includes the choice of the most

appropriate fold kinematics, according to the basic mile-

stones of cross-section balancing (e.g. Elliott, 1983). Our

major purpose for implementing circular hinge sectors in the

classical, kink-style model of Suppe (1983) was to provide

an additional kinematic pathway to compressional fault-

bend folding (Fig. 3). In our model, parallel folding

assumption implies that, when staircase fault trajectories

are assumed, anticlinal bends produce circular hinges. On

the other hand, synclinal bends produce angular hinges, and

curved synclines require curved fault bends. We chose the

simplest geometric construction among the wide variety of

possible curvilinear hinge sectors and, consequently, our

model (in the following referred to as curvilinear fault-bend

folding) is an end member of a large class of geometrical

solutions suitable to be used in the hinge sectors of fault-

bend folds.
2. Circular hinges in fault-bend folding

2.1. Labelling convention

Hanging wall motion above a thrust fault articulated in

three straight ramp segments where the central one is the

steepest (Fig. 3), produces an anticlinal fold geometry

consisting of seven panels named hinterland panel (HL),

backlimb panel (BP), inner circular panel (BP 0), crestal

panel (CP), outer circular panel (FP 0), forelimb panel (FP)

and foreland panel (FL). Folding is produced by translation

of the hanging wall above the three ramp sectors,

respectively named the lower, central and upper ramp.

Adjacent rock panels are separated by straight (g1–g6)

and parabolic (g7 and g8) hinges (Fig. 4): the shape of the

latter is imposed by the adoption of circular sectors and

varies with increasing displacement. The across strike

length of parabolic hinges depends on the fault shape, on

the thickness of the hanging wall, and on the amount of slip

(Fig. 4). Hinge g1, is pinned at the lower inflection point of

the central footwall ramp (I1) and bisects the angle between

HL and BP panels. Hinge g2 is pinned at the stratigraphic

elevation (Sc1) of the central hanging wall ramp lower

inflection point (C1) and is perpendicular to layering in the

BP panel. For small amounts of displacement (Step I, Fig.

3a), g1 and g2 join at point C2 from which hinge g7

originates. Hinge g3 is pinned at C1 and hinge g4 is pinned

at the upper inflection point of the central footwall ramp (I2),

as well as g5. The latter is perpendicular to bedding in the



Fig. 3. Geometric and kinematic evolution of a curvilinear fault bend

anticline. See text for details.

Fig. 4. Labelling convention for the mathematical modelling of curvilinear

fault-bend folding. See text for details.
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FP panel. Hinge g6 is pinned at the stratigraphic elevation

(Sc3) of the central hanging wall ramp upper inflection point

(C3) and bisects the angle between FP and FL. Hinges g5

and g6 joint at point C4 from which hinge g8 originates.

When the entire central hanging wall ramp is translated onto

the upper footwall ramp (Step II, Fig. 3d), two new straight

hinges originate and bound panel CP 0 (Fig. 4b): g0
3 is pinned

at the upper inflection point of the central footwall ramp,

while g0
4 is pinned at C1 and migrates with it (Fig. 4b).

The footwall cut-off angles in the lower, central and
upper ramp are named a1, a2 and a3, respectively (Fig. 4a).

The hanging wall cut-off angles are a1 in the HL panel, b1 in

the BP panel, b2 in the CP panel, b3 in the FP panel and b4
in the FL panel. The inter-hinge angle g1^g2 is f1 and g5^g6

is f2. The angles at the apexes of BP 0 and FP 0 are d1 and d2,

respectively. The backlimb, crest, and forelimb dip are hb,

hc and hf, respectively. During Step II, the angular

parameters are preserved unvaried except for d1, d2, b1
and hc that become d01, d

0
2, b

0
1 and h0

c, respectively (Fig. 4b).

Linear parameters include the amount of slip along the

lower (S1), central (S2) and upper ramp (S3), and the length

of the central ramp (R).
2.2. Fold kinematics

The adoption of circular hinge sectors (e.g. Julivert and

Arboleya, 1984; Rafini and Mercier, 2002) to geometrically

model fault-bend anticlines (Rich, 1934), produces an

overall fold shape resembling that of the kink-style folding.

Circular sectors pinned at the fault surface replace straight

axial surfaces characterising the backlimb–crest and crest–

forelimb transition in the kink-style model (Fig. 5). Pinning
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the circular sectors at the fault surface (e.g. Julivert and

Arboleya, 1984) is the easiest geometrical and analytical

solution and provides a reasonable approximation of natural

structures (Fig. 6).

In our model, line-length and bed thickness are preserved

and flexural slip folding is assumed (Suppe, 1983). This

means that the fault shape and the amount of shortening

impose the fold shape. In the early stages of contraction

(Step I), the BP and FP panels and the circular hinge sectors

BP 0 and FP 0 are still incomplete (Fig. 3a). Material enters

from HL into the backlimb of the anticline (BP and BP 0

panels) through the active axial surfaces (Suppe et al., 1992)

g1 and g7, respectively. The circular sector FP 0 and panel

FP, in the forelimb, grow by the addition of material from

the crestal panel CP and from the foreland through the

active axial surfaces g4 and g8, respectively. With

increasing contraction, the BP panel in the backlimb and

the FP one in the forelimb diachronously develop. The

width of BP, BP 0, FP 0 and FP increases, while CP narrows

(Fig. 3b). The circular sector BP 0 is passively transported

along the central footwall ramp and is fixed because no

material passes across it (Suppe et al., 1992). Conversely,

the circular sector FP 0, which is pinned at the central

hanging wall ramp upper inflection point, is active. Fold

growth induces a forelandward shear in the foreland

material and, consequently, the external pin (EP) undergoes

a limited clockwise rotation. The forelandward shear non-

linearly increases with increasing distance from the upper

ramp and EP has a parabolic shape until points C2 and C4

reach the top of the folded multilayer. The upward

completion of the BP and FP panels induces a linear

distribution of layer parallel shear in the foreland and EP

attains a straight trajectory.

When the curvature centre of BP 0 reaches the upper

inflection point of the central footwall ramp, the crestal

panel CP disappears and the two circular hinge panels
Fig. 5. Comparison between kink-style (a) and curvilinear (b) fault-bend

folding. Fault-bend anticlines developed from identical undeformed

multilayers, above identical fault shapes and by the same amount of fault

displacement.
merge, forming a wide rounded crestal zone (Fig. 3c). This

geometric configuration is a singularity in the evolutionary

pathway of the fold. The next step of contraction (Step II)

causes the rounded crestal zone to split again into two

circular panels (BP 00 and FP 00) separated by a new crestal

panel (CP 0). The circular hinge sector BP 00 is pinned at the

central footwall ramp upper inflection point and is active,

while the circular hinge sector FP 00 is fixed and is passively

transported along the upper footwall ramp. During Step II,

FP 00, FP and FL are passively transported along the upper

footwall ramp and their shape and size remain unchanged,

while panel CP 0 widens. The ramp geometry of the hanging

wall rocks causes the continuous thickness increase in

panels CP 0, BP 00 and BP (Fig. 3d). When the lower and

upper ramps are parallel to layering (simple step; Suppe,

1983), such thickness increase does not occur and only CP 0

widens (Fig. 7).

2.3. Transient stage

Adoption of circular hinge sectors in curvilinear fault-

bend folding imposes a transient geometric configuration in

the anticlinal crest, forelimb, and foreland panels. During

this transient stage, which is dictated by line-length

preservation in the early stages of deformation, the

stratigraphical elevation of point C2 is lower than Sc3
(Fig. 8a). The hinterlandward side of the crestal panel is

characterised by a constant cutoff angle b2. The foreland-

ward side has a variable cutoff angle, b*
2 , initially equalling

a2 and then progressively lowering, to eventually equal b2.

The two sectors are separated by the active axial surface gt

paralleling g3 and pinned at the stratigraphic elevation of

C2. The upward migration of C2 causes the forelandward

migration of gt and the progressive widening of the

constant-cutoff sector (Fig. 8b). When the stratigraphic

elevation of C2 reaches the upper inflection point of the

central ramp, gt coincides with g4 and the entire crestal

panel has a constant cutoff angle. With increasing contrac-

tion, g4 remains parallel to g3 and gt enters the forelimb,

becoming parallel to g5 and dividing it into a constant and a

variable cutoff sector, respectively (Fig. 8c). At this stage,

the entire foreland panel has a very gentle hinterlandward

dip. When the stratigraphic elevation of C2 reaches that of

C3, gt enters the foreland, the entire forelimb attains a

constant cutoff b3, and the transient stage terminates.

Further forelandward migration of gt produces a constant

cutoff sector (b4) in the foreland panel, adjacent to the

forelimb. This sector progressively widens with increasing

displacement (Fig. 8d). At this stage if the stratigraphic

elevation of C2 becomes higher than that of C4, gt becomes

pinned at the stratigraphic elevation of the latter.

Occurrence of the transient configuration in the early

stage of fold growth does not significantly impact the first-

order geometric and kinematic evolution of curvilinear

fault-bend anticlines for central ramp cutoff angles lower

than 458. This means that the role of the transient



Fig. 6. Application of curvilinear fault-bend folding to a frontal anticline at the toe of the Nankay accretionary prism. The seismic profile shows a well-

developed circular hinge sector at the backlimb–crest transition whose curvature centre lies along the fault surface. Line drawing from the original seismic line

in Morgan and Karig (1995).
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configuration can be neglected for the commonly observed

ramp cutoff angles. However, an exact analytical solution of

round-shaped fault-bend folding can be easily provided only

for constantly dipping panels, i.e. when C2 is stratigraphi-

cally higher than C3 and the variable cutoff panel is confined

to the foreland (Fig. 8d).
2.4. Velocity field

The velocity field associated with curvilinear fault-bend

folding predicts that particles have trajectories that are

either parallel to the thrust surfaces or curvilinear (Fig. 9).

Fold sectors where particle paths are parallel to the fault

traces are named translational sectors, while parabolic or

circular trajectories characterise rototranslational sectors.

Translational sectors do not include the possibility for

particles to modify their distance from the corresponding

fault segment. Conversely, particles moving through

rototranslational sectors can change their distance from

the fault (Fig. 2a). A primary difference between velocity

properties characterising translational and rototranslational

sectors, respectively, is that layer dip remains constant in the

former sectors, whereas it gradually changes in the latter.

The velocity field of a curvilinear fault-bend anticline in the

post-transient configuration includes one rototranslational

sector. In step I (Fig. 10a and b), HL, BP, BP 0, CP, FP and

FL are translational sectors and FP 0 is the rototranslational

sector. In step II (Fig. 10d), BP 00 becomes a rototranslational

sector while FP 00 becomes a translational sector.
The presence of rototranslational sectors indicates that

limb rotation occurs during the development of round-

shaped fault-bend anticlines. In particular, the forelimb

rotates in the early stages of folding up to the end of step I

(Fig. 10a and b). During step II, the forelimb and the crest

become part of a large translational sector (TS) and limb

rotation is confined to the transition zone between the

backlimb and the crest (Fig. 10d).
2.5. Analytical solution

The quantitative description of curvilinear fault-bend

folding includes the formalisation of geometrical relations

among angular and linear parameters, the mathematical

description of the incremental positions of points C2 and C4,

and of g7 and g8. Equations describing angular parameters

are listed below and their graphical solutions are illustrated

in Fig. 11. The complete mathematical description of the

model is provided in Appendix A:

f1 Z ða2 Kb1Þ=2 (1)

hb Za2 Kb1 (2)

cotða1ÞZ cotðb1ÞK2tan½ða2 Kb1Þ=2� (9)

d1 Z b2 Kb1 (17)

cotðb2ÞCb2 Z cotða2ÞKcotða1ÞCcotðb1ÞCb1 (18)



Fig. 7. Geometrical and kinematic evolution of a curvilinear fault-bend

anticline developing above a thrust whose lower and upper ramps are

parallel to layering (simple step model). See text for details.

Fig. 8. Kinematic configuration of a circular fault-bend anticline in the

transient stage. Upward migration of point C2, and eventually of point C4,

produces a forelandward migration of hinge gt, which separates the internal

sectors, characterised by constant cutoff angles, from the external sectors,

characterised by variable cutoff angles.
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hc Za2 Kb2 (19)

d2 Z b3 Kb2 Ca2 Ka3 (25a)

d01 Z b0
1 Kb1 Ca2 Ka3 (25b)

cotðb3ÞCb3 Za3 Ka2 Ccotðb2ÞCb2 (26a)

cotðb0
1ÞCb0

1 Za3 Ka2 Ccotðb1ÞCb1 (26b)

f2 Z ðb3 Kb4Þ=2 (28)

cotðb4ÞK2tan½ðb3 Kb4Þ=2�

Z cotða3ÞKcotða2ÞCcotðb3Þ (41)

h0
c Z b0

1 Ka3 (42)

hf Z b3 Ka3 (43)

d02 Z b3 Kb0
1 (45)

These equations allow construction of the shape of a

curvilinear fault-bend anticline in the post transient stage.
The stratigraphical elevation of point C2 exceeds that of

point C3 when fault displacement (S1) verifies the following

equation:

S1OSm†R (87)

with R being the central ramp length and

Sm Z ½sinðb1Þ=sinða1Þ�†½sinðf1Þ†sinða2Þ�=cosðf1Ka2Þ

(86)



Fig. 9. Velocity field associated with the development of a curvilinear fault-

bend anticline. Particle trajectories are characterised by straight segments

parallel to the thrust and by parabolic segments. The latter develop above

the upward convex thrust bend.
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When Eq. (87) is not verified, point C2 is still

stratigraphically lower than Sc3 (Fig. 8) and variable cutoff

panels are present in the forelimb and possibly in the crestal

panel.

Entering the footwall cutoff angles (a1, a2 and a3) in the

graphs (b) and (c) of Fig. 11 allows one to obtain a solution

for the hanging wall cutoff angles. In particular, graph (b)

relates a1 and a2 to b1 and b2. The central ramp hanging
Fig. 10. Time–space evolution of translational and rototranslational sectors

in a curvilinear fault-bend anticline after the transient stage.
wall cutoff angle (b2 or b1, depending on fault displace-

ment) is then entered in graph (c) to obtain the upper ramp

hanging wall cutoff angle (b3 or b0
1). When the available

data are the backlimb dip (hb), the forelimb dip (hf), and the

crestal dip in step II (h0
c), the hanging wall (a1, a2 and a3)

and the footwall (b1, b2 and b3) cutoff angles are provided in

graphs (a), (b) and (d).

The geometric construction of the step I configuration

starts from a2, that is obtained by linking the curvature

centres of the two circular hinge sectors (Fig. 4a). The

backlimb dip (hb) and a2 are entered into Eq. (2) to obtain

b1; a2 and b1 are then entered in graph (b) to obtain a1 and

b2. Once b2, a2 and the forelimb dip (hf) are known, graph

(d) provides the solution for b3. Finally, a3 is obtained from

Eq. (43). The geometric construction of the step II

configuration starts from a3, which is obtained by linking

the curvature centres of the two circular hinge sectors (Fig.

4b). Entering a3, hf and h0
c into Eqs. (42) and (43) provides

b0
1 and b3, respectively. Entering b0

1, h
0
c and hb in graph (a)

provides b1. Once b1 and hb are known, the solution for a2 is

given by Eq. (2); a2 and b1 can be entered in graph (b) to

obtain a1 and b2.

The geometrical construction of the simple step con-

struction (Fig. 7) requires one to know either the backlimb

or forelimb dip, which are univocally related (Fig. 12). For

small amounts of displacement, (i.e. when g7 and g8 axial

surfaces still occur), the dip of the ramp (corresponding to

hb) can be obtained by linking the curvature centre of the

two circular hinge sectors.

2.6. Simplified analytical solution

The mathematical description of the internal architecture

in curvilinear fault-bend anticlines can be simplified without

significantly altering the overall balancing of the structures,

by imposing a horizontal orientation to both the CP and FL

panels. The overall error produced by these simplifications

does not exceed 3% of the original line length for central

ramp angles lower than 458. At this a2 value, the maximum

difference between a2 and b2 is 2.38 and the maximum

difference between a3 and b4 is 2.18. When a2 is 308, the

maximum difference between a2 and b2 is 0.28, and the

maximum difference between a3 and b4 is 0.28. Moreover,

the imposition of a flat lying orientation to both the CP and

FL implies their constant evolution through time, eliminat-

ing the transient stage and the division between variable and

constant cutoff panels. Consequently, Eq. (87) is verified for

every value of slip.
3. Growth strata pattern

The occurrence of limb rotation in curvilinear fault-bend

anticlines implies that rotational syngrowth wedges (e.g.

Hardy and Poblet, 1994) form in the syntectonic sediments

deposited on the forelimb and on the crest (Salvini et al.,



Fig. 11. Graphical solutions for the angular parameters describing curvilinear fault-bend anticlines: the graph (a) relates b1, b
0
1 and the sum of hb and h

0
c. Graph (b) relates a1, a2, b1 and b2 (two parameters must be

introduced in the graph). Graph (c) relates the central ramp hanging wall cutoff angle (b1 or b2), the upper ramp hanging wall cutoff angle (b3 or b
0
1), and the difference between a2 and a3. Graph (d) relates b2, b3

and the sum of a2 and hf. See text for details on the graphical construction.
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Fig. 12. Graph relating the backlimb dip (hbZa2) to the forelimb dip (hf) in

a curvilinear fault-bend anticline when the lower and the upper ramp

segments are parallel to layering (i.e. simple step, a1Za3Z0).

Fig. 13. Growth strata pattern predicted by curvilinear fault-bend folding. In

the first stages of contraction ((a)–(c)), a growth triangle develops in the

trailing syncline, while in the leading syncline a growth wedge develops.

When the anticline enters in the step II configuration (d), the growth wedge

developed during step I is passively transported along the upper flat and a

new growth wedge develops in the crestal sector.
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2001). In particular, the evolution of rototranslational

sectors during fold amplification (Fig. 10) causes the

development of diachronous rotational syngrowth wedges.

This is clearly evident when the sedimentation rate exceeds

the uplift rate of the anticlinal crest (Fig. 13). During step I,

limb rotation is confined in the forelimb, and the rather steep

final attitude produces well developed wedge geometries in

the syntectonic sediments deposited in the leading syncline.

Conversely, the nonrotational velocity field of the backlimb

is highlighted by the development of a growth triangle

(Suppe et al., 1992) in the syntectonic sediments deposited

in the trailing syncline. Deposition of flat-lying sediments

overlying the rotational syngrowth wedge in the leading

syncline highlights the nonrotational velocity field of the

forelimb during step II (Fig. 13d). At this stage, develop-

ment of a rototranslational panel at the backlimb-crest

transition produces wedge geometries in the syntectonic

sediments deposited on the inner part of the crest. The lower

amount of layer rotation is indicated by the smaller apical

angle of the crestal rotational syngrowth wedge compared

with the older rotational syngrowth wedge in the forelimb.
4. Natural examples

The Alianello anticline is located in the Sant’Arcangelo

basin, Southern Apennines, Italy, and involves Pleistocene

siliciclastic sediments (e.g. Pieri et al., 1994; Casciello et al.,

2000). In particular, the folded multilayer consists of an

alternance of conglomerates and sands. The fold axis strikes

N–S and plunges about 158 toward the north. Both the

backlimb-crest and crest-forelimb hinge sectors are well

rounded (Fig. 14). The backlimb dip is rather constant at

about 348, and the forelimb dip is about 588. The gentle
westward dip of the foreland is related to a large-scale

growth syncline (Pieri et al., 1994). Bed thickness is

preserved in the pre-growth strata and shear fibres on

bedding surfaces indicate flexural slip folding. Clays and

conglomerates exposed in the anticlinal core are not affected

by second-order folding or faulting. Growth wedges are

present in the backlimb, but mainly in the forelimb. No data

are available on the shape and location of the underlying

blind thrust. Corresponding beds within the anticline have

comparable elevations in the hinterland and at the forelimb-

foreland transition, and this suggests a flat-lying décolle-

ment geometry.

Backlimb and forelimb dip data in the Alianello anticline

are well fitted by curvilinear fault-bend folding (Fig. 15A



Fig. 14. Panoramic view of the Alianello anticline (Southern Apennines, Italy). The natural section is near orthogonal to the fold axis in the hinterland, in the

backlimb, in the crest and in the inner part of the forelimb. Conversely, it becomes oblique in the outer part of the forelimb and in the foreland. The stereonet in

the left upper corner provides the contouring of poles to bedding/lower hemisphere, 5% contouring.
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and B). The model predicts an upper flat located at a very

shallow depth (20 m below the ground level), and a lower

flat at about 80 m below the ground level. They are

connected through a 328 dipping ramp segment. The

uniqueness of the geometrical solution implies that, if the

Alianello anticline is interpreted as a simple step fault-bend

fold, it has a Step I configuration with a fault displacement

of about 90 m. Model results provide a satisfactory fit of the

pre-growth strata geometry. Predicted growth stratal

geometries show a rotational syngrowth wedge in the

forelimb, resembling that in the Alianello anticline.

Conversely, the kink-style hinge at the crest-to-backlimb

transition in the model does not occur in the natural

example. This mismatch can be overcome by assuming a

slight segmentation of the ramp at both inflection points

(Fig. 15C).

The presence of rotational syngrowth wedge in the

forelimb is not predicted in kink-style fault-bend folding

(Suppe et al., 1992), ruling out this model as a suitable fold

kinematics for the Alianello anticline. Backlimb and

forelimb dip values can be satisfactory fitted by constant

thickness fault-propagation folding (Suppe and Medwedeff,

1990), assuming a 358 dipping ramp to get a 588 dipping

forelimb. However, the growth strata pattern predicted by

this kinematic model (Suppe et al., 1992; Storti and Poblet,

1997) consists of two growth triangles separated by a flat

lying panel both in the forelimb and in the backlimb, and

this does not match the geometry of syntectonic sediments

in the Alianello anticline. Rotational syngrowth wedges are

expected in both limbs of décollement anticlines (Poblet et

al., 1997), but the lacking evidence of tectonic thickening in
the Alianello core rules out this kinematic mechanism for

the Alianello anticline.

The rotational syngrowth wedge geometries predicted by

the curvilinear fault-bend folding are described in syntec-

tonic sediments deposited during the evolution of natural

fault-bend anticlines. In the Lost Hills anticline (Medwe-

deff, 1989), both the forelimb and the crestal wedges are

well developed, with geometries comparable with those

predicted by round-shaped fault-bend folding (Fig. 16a).

The second example (Fig. 16b) shows a growth fault-bend

anticline (Soto et al., 2002) associated with the Montsec

thrust (Graus-Tramp basin, Southern Pyrenees), with a well-

developed growth wedge in the leading syncline.
5. Discussion
5.1. Comparison with kink-style fault-bend folding

The use of circular hinge sectors to model the geometry

and kinematics of fault-bend folding implies first-order

differences with respect to the kink-band solution (Suppe,

1983). (1) The fold shape widens upward, both in the

forelimb and in the backlimb (Fig. 3). It follows that the

geometry of folded layers depends on their distance from

the fault. In contrast, kink-band fault-bend folding generates

constantly-dipping panels. (2) Analysing the position of

circular sector curvature centres allows discrimination

between Step I and Step II configurations and the

unequivocal reconstruction of some aspects of the fault

shape. In contrast, in kink style fault-bend folding (Fig. 5a),



Fig. 15. Application of curvilinear fault-bend folding to the Alianello

anticline. (A) Line-drawing of the photograph in Fig. 14. (B) Fold, fault and

syntectonic sediments geometries resulting from the application of the

curvilinear fault-bend folding with a simple step staircase fault trajectory.

(C) Model results for a slightly segmented fault trajectory.

Fig. 16. Natural examples of growth stratal geometries resembling those

predicted for curvilinear fault-bend anticlines. (a) Growth stratal geome-

tries imaged in the Lost Hills anticline (after Medwedeff, 1989); (b) growth

stratal geometries associated with a fault-bend anticline in the Graus–

Tramp basin (after Soto et al., 2002).
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fold geometry does not distinguish between large and small

slip faults. (3) Curvilinear fault-bend folding predicts fault-

fold angular relationships that are comparable with those

obtained with the kink-band model in the most frequent

range of fault ramp cutoff angles (!308, e.g. Suppe, 1985).

Ramp cutoff angles approaching 308 predict different

forelimb dip values in the two models. In particular a

steeper forelimb can be simulated by circular fault-bend

folding due to steeper admissible ramp cutoff angles. In the

simple step configuration, for example, the validity of the

mathematical solution up to 32.758 and the asymptotic

shape of the corresponding curve (Fig. 12) allow us to

simulate very steep to upright forelimbs. The upper limit for
the forelimb dip in a curvilinear fault-bend anticline is in

fact 908, compared with 608 in the Suppe model. (4) The

presence of rototranslational sectors and consequent limb

rotation in curvilinear fault-bend folding challenge the

unequivocal correlation between occurrence of rotational

syngrowth wedges and décollement folding as the folding

mechanism (e.g. Hardy et al., 1996; Storti and Poblet,

1997). Such a correlation, which derives from the assump-

tion of self-similar folding in fault-propagation and fault-

bend anticlines (e.g. Suppe, 1985), precluded interpretation

of many growth structures as fault-bend folds. (5)

Conversely to the kink style model, where flexural slip is

entirely accommodated within the fold, line-length balan-

cing imposes a forelandward layer parallel shear and a

hinterlandward dip in the foreland of round-shaped fault-

bend anticlines. Both these geometrical outgrowths can be

eliminated by assuming the occurrence of a limited amount

of deformation in the foreland adjacent to the fold. In

particular, depending on the environmental conditions of

deformation and the mechanical stratigraphy, foreland

deformation can develop by either discrete forethrusting

and/or backthrusting, or/and penetrative dissolution, or/and

second order folding (Fig. 17). It is worth noting, however,

that the expected displacement and size of thrusting and

folding induced by the predicted forelandward shear are far

below the resolution of regional balanced cross-sections.

Analogously, the predicted amount of layer-parallel short-

ening (Fig. 17d) is expected to be significantly lower than
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that observed in ‘undeformed’ foreland, which can exceed

20% (e.g. Casas et al., 1996).

5.2. Insights for fold-related deformation

Different partitioning of bending and layer-parallel slip

in the kink bands and circular hinge sectors, respectively

(Fig. 2) suggests different expectations for rock fabric

evolution in the various fault-bend folding models.

Neglecting the role of mechanical stratigraphy, the

assumption of a relationship between bending angle and

deformation intensity may provide a crude approximation

for predicting folding-related deformation intensity in kink-

style folding (e.g. Storti and Salvini, 1996). Application of

this approach to fault-bend folding (Fig. 18a) produces a

deformation pattern that can be conveniently described in

terms of deformation panels and deformation domains

(Salvini and Storti, 2004). Deformation domains are rock

volumes that contain deformational features generated by
Fig. 17. Possible mechanisms suitable to annihilate the very gentle

hinterlandward dip and excess layer-parallel slip in the foreland of

curvilinear fault-bend anticlines: (a) second-order forethrusting; (b)

second-order backthrusting; (c) second order disharmonic folding; (d)

stratabound pressure solution with an upward increasing intensity.
rolling of layers about active axial surfaces during a single

bending event. Accordingly, this concept relates to the

kinematics of the folding process. Deformation panels

are rock volumes that underwent a common deformation
Fig. 18. Distribution of deformation panels and deformation domains in

kink-style fault-bend folding ((a) and (b)) and curvilinear fault-bend folding

((c) and (d)). Grey tones are proportional to the expected deformation

intensity. See text for details.
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history. This concept relates to the deformation fabric of a

given rock volume. Deformation panels and deformation

domains coincide in step I fault-bend folding (Fig. 18a).

During step II, the inner crestal panel belongs to both the

deformation domains 1 and 3, and corresponds to defor-

mation panel 3, produced by the overprinting of two

bending events (Salvini and Storti, 2004) (Fig. 18b).

Application of these concepts to kink-style fault-bend

folding in material with homogeneous mechanical strati-

graphy, systematically produces uniformly deformed rock

panels (e.g. Salvini and Storti, 2001).

Material passing through a circular hinge undergoes a

bedding-plane slip whose cumulative value is constant,

while its increment per time is dependent on the distance

from the curvature centre, as well as the curvature itself.

This may imply a more smoothed and non-homogeneous

distribution of deformational features in the folded rock

panels. Development of curvilinear fault-bend anticlines

above staircase thrust trajectories produces deformation

panels associated with both kink-style and circular hinges

(Fig. 18c). In particular, material migration about the lower

ramp inflection point causes homogeneous deformation in

rock folded by the straight hinge segment g1, whereas rocks

rolling about the parabolic hinge g7 undergo a non-

homogeneous deformation, roughly proportional to layer

dip. This implies that the backlimb of the fault-bend

anticline during step I (Fig. 7) is expected to consist of a

non-homogeneously deformed rock panel (BP 0) ahead of a

homogeneously deformed one (BP). The completion of the

structure during step II eventually results in a deformation

pattern consisting of four deformation panels (Fig. 18c). The

innermost one, in the backlimb, is predicted to be

homogeneously deformed, analogous to the kink-style

structure. Deformation in the other three panels is non-

uniformly distributed and its intensity generally decreases

upward and laterally. Comparison with a kink-style fault-

bend anticline highlights similar patterns of deformation

domains/panels in the backlimb and crest, significant

intensity differences in the deformation panels 2 and an

important size reduction of the crestal region virtually

unaffected by folding related deformation. Deformation

panel/domain 4 characterises the frontal sector of the

forelimb in curvilinear fault-bend anticlines and develop

by instantaneous bending of foreland material about axial

surface g8, followed by progressive forelandward rotation.

Adoption of more smoothed geometries at both the lower

and upper ramp inflection points, increases the width of

hinge zones (Fig. 18d). In particular, kink-style hinges at the

lower ramp inflection point and at the forelimb–foreland

transition are replaced by curvilinear hinge sectors.

Progressive layer curvature by parallel folding at the

hinterland–backlimb transition, induces an upward increas-

ing gradient in deformation intensity, opposite to folding at

the upper ramp inflection zone. As a consequence, the

average intensity of deformation in panel 3 decreases

compared with that expected in curvilinear fault-bend
anticlines developed above staircase thrust trajectories.

The general decrease of deformation intensity all along the

anticline is not homogeneous and this attenuates differences

among deformation panels (Fig. 18d). Finally, the widening

of the forelimb–foreland transition implies the narrowing of

the deformation panel 4 and eventually its annihilation.

Comparison between predicted deformation patterns in

kink-style fault-bend folding and curvilinear fault-bend

folding shows that in the latter deformation intensity is not a

diagnostic parameter for identifying deformation domains/

panels. Dip and typology (i.e. fault, joint, solution cleavage)

of deformational features and their possible overprinting

relationships (e.g. Srivastava and Engelder, 1990) may

provide a valuable tool for such a purpose in curvilinear

fault-bend anticlines. Identifying deformation domains/

panels provides, in fact, an effective support for correctly

unravelling fold-fault kinematics (e.g. Salvini and Storti,

2004).
6. Conclusions

Circular hinge sectors have been used to analytically

model the geometry and kinematics of fault-bend folding

(curvilinear fault-bend folding). The analytical solution of

curvilinear fault-bend folding predicts fault-fold angular

relationships that are comparable with that provided by the

classical kink-style model in the commonly accepted range

of fault ramp cutoff angles (!308). However, the geometry

of the fold and, above all, its kinematic evolution, are

different. In particular, the velocity field of round-shaped

fault-bend folding consists of translational (non-rotational)

and rototranslational sectors where the distance of particles

from the fault varies through time. The presence of

rototranslational sectors implies the occurrence of limb

rotation in the forelimb and in the crest that, when

sedimentation occurs contemporary to folding, produces

rotational syngrowth wedges in the syntectonic sediments.

Limb rotation occurs diachronously during the evolution of

a curvilinear fault-bend anticline and, consequently, the

syngrowth wedge in the forelimb predates the one in the

crest.

Circular hinge sectors allow one to successfully model

rounded fold shapes without implying a great segmentation

of the fault shape. This, coupled with the predicted

development of rotational syngrowth wedges, broadens

the applicability of fault-bend folding for modelling the

evolution and internal architecture of natural thrust related

anticlines. Line-length balancing imposes the occurrence of

a hinterlandward dipping panel and of an excess foreland-

ward layer-parallel shear in the foreland of curvilinear fault-

bend anticlines. This ‘excess length’ in the foreland may

provide the proper triggering factor for second-order folding

and faulting, and pressure solution cleavages that are

commonly found at the toe of shallow foreland structures.

Application of model predictions to natural thrust-related
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anticlines validates the usefulness of the proposed geo-

metrical and analytical solution.
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Appendix A
A.1. Equations 1 and 2 (see Fig. 19b)

f1 Z ða2 Kb1Þ=2 (1)

hb Za2 Kb1 (2)
Fig. 19. Geometrical construction for Eqs. (1), (2), (9), (17)–(19) and (48).
A.2. Equation 9 (see Fig. 19a and b)

After migration across the axial surface g1, the triangle

ABL (Fig. 19a) becomes A 0BL (Fig. 19b). In order to

preserve line length, AB must equal A 0B:

ABZ sinð90Cf1 Ka1Þ†½AL=sinða1Þ� (3)

A0BZ sinð90Cf1 Ka2Þ†½AL=sinðb1Þ� (4)

By comparing Eqs. (3) and (4) we obtain:

cosðf1 Ka2Þ=sinðb1ÞZ cosðf1 Ka1Þ=sinða1Þ (5)

cos(f1Ka2) can also be expressed as cos(f1Cb1), and

Eq. (5) becomes:

cosðf1 Cb1Þ=sinðb1Þ

Z ½cosðf1Þ†cosða1ÞCsinðf1Þ†sinða1Þ�=sinða1Þ (6)

Eq. (6) can also be written as:

½cosðf1Þ†cosðb1ÞKsinðf1Þ†sinðb1Þ�=sinðb1Þ

Z cosðf1Þ†cotða1ÞCsinðf1Þ (7)

Simplifying and rearranging:

cotða1ÞZ cotðb1ÞK2tanðf2Þ (8)

Substituting Eq. (1) into Eq. (8):

cotða1ÞZ cotðb1ÞK2tan½ða2 Kb1Þ=2� (9)
A.3. Equations 17–19 (see Fig. 19a and b)

During shortening, the shape of polygon ABCDEFG

(Fig. 19a) modifies to A 0BCDEF 0G 0H (Fig. 19b). Line

length preservation imposes:

EFCFGZEF0 CF0G0 CG0H (10)
EFZABCCD†tanðf1Þ (11)

FGZCD†cotða2Þ (12)

EF0 ZABKCD†tanðf1Þ (13)

F0G0 ZCD†d1 (14)

G0HZCD†cotðb2Þ (15)

Substituting Eqs. (11)–(15) into Eq. (10) and simplify-

ing:

d1 Ccotðb2ÞK2tanðf1ÞZ cotða2Þ (16)

d1 Z b2 Kb1 (17)

Substituting Eqs. (17) and (1) into Eq. (16) we obtain:

cotðb2ÞCb2 Z cotða2ÞKcotða1ÞCcotðb1ÞCb1 (18)

hc Za2 Kb2 (19)
A.4. Equations 25a, 25b, 26a and 26b (see Fig. 20a and b)

After translation onto the upper ramp, triangle ABC

becomes the polygon ABC 0D (Fig. 20). Line length

preservation requires that:

BCZBC0 CC0D (20)

BCZAB†cotðb2 or b1Þ (21)

being either b2 (Step I) or b1 (Step II) the hanging wall

central ramp cut-off angles:
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BC0 ZAB†ðd2 or d
0
1Þ (22)

where either d2 (Step I) or d01 (Step II) are the apical angles

of the circular sector pinned at the central ramp upper

inflection point:

C0DZAB†cotðb3 or b
0
1Þ (23)

being b3 (Step I) or b
0
1 (Step II) the forelimb or the CP 0 panel

cutoff angle.

Substituting Eqs. (21)–(23) into Eq. (20) and simplify-

ing:

cotðb2 or b1ÞZ ðd2 or d
0
1ÞCcotðb3 or b

0
1Þ (24)

d2 Z b3 Kb2 Ca2 Ka3 (25a)

d01 Z b0
1 Kb1 Ca2 Ka3 (25b)

Substituting Eqs. (25a) or (25b) into Eq. (24) we obtain:

cotðb3ÞCb3 Za3 Ka2 Ccotðb2ÞCb2 (26a)

cotðb0
1ÞCb0

1 Za3 Ka2 Ccotðb1ÞCb1 (26b)
A.5. Equation 28 (see Fig. 21b)

f2 Z 90K ½180K ðb3 Ka3ÞK ða3 Kb4Þ�=2 (27)

Simplifying:

f2 Z ðb3 Kb4Þ=2 (28)
A.6. Equation 41 (see Fig. 21a and b)

During contraction, triangle ACD (Fig. 21a) becomes

AC 0D 0 (Fig. 21b). Line length preservation imposes:

CDZC0DKAC0 (29)
Fig. 20. Geometrical construction for Eqs. (25a), (25b), (26a), (26b), (42),

(43), (52a) and (52b).
CDZH†cotða3ÞKH†cotða2Þ (30)

B0C0 ZH=cosðf2Þ (31)

C0D0 ZB0C0†½sinð90Cf2 Kb3Þ=sinðb4Þ� (32)

AC0 ZB0C0†½sinð90Cf2 Kb3Þ=sinðb3Þ� (33)

Substituting Eq. (31) into Eqs. (32) and (33), we obtain:

C0D0 ZH†½cosðf2 Kb3Þ=sinðb4Þ�=cosðf2Þ (34)

AC0 ZH†½cosðf2 Kb3Þ=sinðb3Þ�=cosðf2Þ (35)

Substituting Eqs. (30), (34) and (35) into Eq. (29) and

simplifying:

½cosðf2 Kb3Þ=cosðf2Þ�†½1=sinðb4ÞK1=sinðb3Þ�

Z cotða3ÞKcotða2Þ (36)

Eq. (36) can also be written as:

cosðf2 Kb3Þ=½cosðf2Þ†sinðb4Þ�Kcosðf2

Kb3Þ=½cosðf2Þ†sinðb3Þ�

Z cotða3ÞKcotða2Þ (37)

cos(f2Kb3) can also be written as cos(f2Cb4), which

substituted into Eq. (37) gives:

cosðf2 Cb4Þ=½cosðf2Þ†sinðb4Þ�Kcosðf2

Kb3Þ=½cosðf2Þ†sinðb3Þ�

Z cotða3ÞKcotða2Þ (38)

Eq. (38) can be written as:
Fig. 21. Geometrical construction for Eqs. (28) and (41).
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f½cosðf2Þ†cosðb4Þ

Ksinðf2Þ†sinðb4Þ�=½cosðf2Þ†sinðb4Þ�g

K f½cosðf2Þ†cosðb3Þ

Csinðf2Þ†sinðb3Þ�=½cosðf2Þ†sinðb3Þ�g

Z cotða3ÞKcotða2Þ (39)

Simplifying and rearranging:

cotðb4ÞKcotðb3ÞK2tanðf2ÞZ cotða3ÞKcotða2Þ (40)

Substituting Eq. (28) into Eq. (40):

cotðb4ÞK2tan½ðb3 Kb4Þ=2�

Z cotða3ÞKcotða2ÞCcotðb3Þ (41)
A.7. Equations 42 and 43 (see Fig. 20a and b)

h0
c Z b0

1 Ka3 (42)

hf Z b3 Ka3 (43)
A.8. Equation 45 (see Fig. 4)

d01 Cd02 Z d1 Cd2 (44)

Substituting Eqs. (18), (25a) and (25b) into Eq. (44) and

simplifying:

d
0
2 Z b3 Kb

0
1 (45)
A.9. Equations 48, 52a and 52b (see Figs. 19 and 20)

The relationships between the total shortening along the

lower ramp (S1) and its partitioning in the central (S2) and

upper (S3) ramps are described by Eqs. (48), (52a) and

(52b). In particular, when the amount of slip along the lower

ramp (S1) is LA (Fig. 19), the amount of slip along the

central ramp (S2) is LA 0 and the following equations are

verified:

LBZ S1†sinða1Þ=cosðf1Þ (46)

S2=sin½180K ð90Cf1 Ka2ÞKb1�ZLB=sinðb1Þ (47)

Substituting Eq. (46) into Eq. (47) and simplifying we

obtain:

S2 Z S1†sinða1Þ=sinðb1Þ (48)

which relates the amount of shortening along the lower and

central ramps.

When the incremental shortening along the central ramp

(S2) equals AC (Fig. 20), the amount of slip along the upper

ramp (S3) is AD:

ABZ S2=sinðb2; b1Þ (49)

S3 ZAB=sinðb3; b
0
1Þ (50)
Substituting Eq. (49) into Eq. (50) and simplifying:

S3 Z S2†½sinðb2; b1Þ=sinðb3; b
0
1Þ� (51)

Substituting Eq. (48) into Eq. (51), we obtain:

S3 Z S1†½sinða1Þ=sinð b1Þ�†½sinðb2Þ=sinð b3Þ� (52a)

which relates the amount of shortening along the lower and

upper ramp in the step I configuration.

During step II, the hanging wall cut-off angles along the

central and upper ramp become b1 and b
0
1, respectively. As a

consequence, Eq. (52a) becomes:

S0
3 Z S0

1†½sinða1Þ=sinð b1Þ�†½sinðb1Þ=sinð b
0
1Þ� (52b)

with S0
3 and S0

1 being the amount of slip after the transition

from step I to step II.
A.10. Equations 53, 54 and 56 (see Fig. 22a)

These describe the incremental position of C2 during the

fold evolution, calculated with respect to C1 (0,0):

YC2 ZDC2†cosða2 Kb1Þ (53)

XC2 ZKDC2†sinða2 Kb1Þ (54)

with XC2 and YC2 being the incremental coordinates of C2 at

shortening S1:

S2=sinðf1ÞZDC2=sinð90Ka2 Cf1Þ (55)

Substituting Eq. (48) into Eq. (55) and rearranging:

DC2 Z S1†½sinða1Þ=sinðb1Þ�†½cosða2 Kf1Þ=sinðf1Þ� (56)
A.11. Equations 58, 59 and 63 (see Fig. 22b)

These describe the incremental position of C4, respect to

the upper inflection point of the central ramp I2 (0,0):

DC4 ZL1CL2 (57)

YC4 ZDC4†cosðd2Þ (58)

XC4 ZDC4†sinðd2Þ (59)

with XC4 and YC4 being the incremental coordinates of C4 at

shortening S1:

L1Z S3†sinðb3Þ (60)

L2Z S3†cosðb3Þ=tanðf2Þ (61)

Substituting Eqs. (62) and (63) into Eq. (57):

DC4 Z S3†½sinðb3ÞCcosðb3Þ=tanðf2Þ� (62)

Substituting Eq. (52a) into Eq. (62) and simplifying:

DC4 Z S1†½sinða1Þ=sinðb1Þ�†½sinðb2Þ�†½1

Ccotðb3Þ†cotðf2Þ� (63)



Fig. 22. Geometrical construction for Eqs. (86), (87), (53), (54), (56), (58),

(59), (63), (66), (68), (81) and (83).
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A.12. Equations 66 and 68 (see Fig. 22c)

These describe the parabolic shape of g7, which is the

locus of the points whose distance from C1 and from the line

r is constant, with C1 being the origin of the reference

Cartesian system:

r : y ZKS2†sinða2ÞCS1†sinða1Þ (64)

Substituting Eq. (48) into Eq. (64) and rearranging:

r : y Z S1†½sinða1Þ=sinðb1Þ�†½sinðb1ÞKsinða2Þ� (65)

K Z S1†½sinða1Þ=sinðb1Þ�†½sinða2ÞKsinðb1Þ� (66)

Substituting Eq. (66) into Eq. (65):

r : y ZKK (67)

The solution for g7 is:

y Z x2=2K KK=2 (68)
A.13. Equations 81 and 83 (see Fig. 22d)

These describe the parabolic shape of g8, which is the

locus of the points whose distance from the central ramp

upper inflection point is HCL1 and whose distance from the

line r is H:
L1Z S3†sinðb3Þ (69)

r : y Z x†tanða3 Kb4ÞCS3†½sinða3Þ

Kcosða3Þ†tanða3 Kb4Þ� (70)

J Z ½sinða3ÞKcosða3Þ†tanða3 Kb4Þ� (71)

The distance between point P and the line r is equal to H

and it is given by the following equation:

HZK½x†tanða3 Kb4ÞKyCJ�=½tan2ða3 Kb4ÞC1�1=2

(72)

Simplifying:

H ¼ ½Kx†tanða3 Kb4Þ þ yKJ�†cosða3 Kb4Þ (73)

The distance between P and the origin (I2) is D1, which is

also equal to HCL1. The distance between P and r is H. It

follows that:

D1KL1ZH (74)

D12 Z ðHCL1Þ2 (75)

D12 Z x2 Cy2 (76)

Substituting Eqs. (69), (73) and (76) into Eq. (75) and

rearranging:

x2 Cy2 Z f½Kx†tanða3 Kb4ÞCyKS3*J�†cosða3

Kb4ÞC ½S3†sinðb3Þ�g
2 (77)

Simplifying:

x2 Cy2 Z f½Kx†sinða3 Kb4ÞCy†cosða3 Kb4Þ

KS3†J†cosða3 Kb4Þ�C ½S3†sinðb3Þ�g
2 (78)

J†cosða3

Kb4ÞZ ½sinða3ÞKcosða3Þ†tanða3 Kb4Þ�†cosða3 Kb4Þ

Z sinða3Þ†cosða3 Kb4ÞKcosða3Þ†sinða3 Kb4Þ

Z sin½a3 K ða3 Kb4Þ�Z sinðb4Þ

(79)

Substituting Eq. (79) into Eq. (78) and reassembling:

x2 Cy2 Z fKx†sinða3 Kb4ÞCy†cosða3 Kb4Þ

KS3†½sinðb4ÞKsinðb3Þ�g
2 (80)

K Z S3†½sinðb3ÞKsinðb4Þ� (81)

Substituting Eq. (81) into Eq. (80) and rearranging:
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x2 Cy2 Z ½x†sinða3 Kb4Þ�
2 C ½y†cosða3 Kb4Þ�

2

CK2 K2xy†½sinða3 Kb4Þ†cosða3

Kb4Þ�K2Kx†sinða3 Kb4Þ

C2Ky†cosða3 Kb4Þ (82)

Simplifying and reassembling we obtain:

½X†cosða3 Kb4ÞCY†sinða3 Kb4Þ�
2

ZK†½K2x†sinða3 Kb4ÞC2y†cosða3 Kb4ÞCK�

(83)

This equation describes the shape of g8 being the central

ramp upper inflection point I2 (0,0), the origin of the

reference Cartesian system.
A.14. Equations 86 and 87 (see Figs. 4 and 22a)

DC2 must exceed the thickness of the ‘stratigraphical

distance’ between the upper (I2) and lower (I1) central ramp

inflection points:

DC2O ðRÞ†sinða2Þ (84)

with R being the central ramp length.

Substituting Eq. (56) into Eq. (84) and rearranging:

S1OR†½sinða2Þ†sinðb1Þ†sinðf1Þ�=½sinða1Þ†cosða2 Kf1Þ�

(85)

Sm Z ½sinðb1Þ=sinða1Þ�†½sinðf1Þ†sinða2Þ�=cosðf1 Ka2Þ

(86)

Substitution of Eq. (86) into Eq. (85):

S1OSm†R (87)
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